Benha University
Faculty of Engineering (Shoubra)
Electrical Engineering Department $1^{\text {st }}$ year Electrical Power

Computer Programming (EC171) $2^{\text {nd }}$ Semester 2013/2014
Final Exam
Time: 3hr, No. of Pages: 2

Answer all the questions:

1. Write the output of the given MATLAB commands:
(a) $a=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$; $b=r e p m a t(a, 3,1), ~ c=f l i p l r(b), ~ d=2 . \wedge c, ~ s i z e(d), ~ l e n g t h(d) ~$
(b) $\mathrm{e}=1: 9$; $\mathrm{A}=$ reshape $(\mathrm{e}, 3,3), \mathrm{A}(4,1: 3)=[5811], \mathrm{A}(:, 3)=[],[\mathrm{i}, \mathrm{j}]=\mathrm{find}(\mathrm{A}>=7)$, $\mathrm{B}(1: 6)=\mathrm{A}(1: 3$,:), $\mathrm{B} 1=\mathrm{B}(\operatorname{logical([100101]))}$
(c) $\mathrm{C}=[135 ; 246 ; 369] ; \mathrm{D}=\mathrm{C}(1: 3,3:-1: 1), \mathrm{E}=\left[\mathrm{D}([13],:) \mathrm{D}\left(1: 2,\left[\begin{array}{ll}1 & 3\end{array}\right]\right)\right], \mathrm{F}=\mathrm{E}\left(:,\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]\right)$, $\mathrm{F}^{\prime}, \max (\mathrm{D})$
(d) B3=rem($-15,4$), $\bmod (-15,4), \operatorname{rem}(-17,-4), \bmod (-17,-4)$
2. (a)What are the function of the following MATLAB commands:
(5 Marks)
(i) mkdir, polyder (ii) sub2ind, deconv (iii) eval, polyval
(iv) logical, find (v) whos, what
(b) A coil having a self-induction coefficient of 0.2 H and a winding resistance of 0.6Ω. The current in it increases from zero to 300A at the rate of $120 \mathrm{~A} / \mathrm{s}$. Then remains constant at 300 A for 2 s and then falls uniformly to zero in rate of $120 \mathrm{~A} / \mathrm{s}$ as shown in $\operatorname{fig}(1)$. Write a MATLAB Program to draw $i, V_{R}, V_{L}, V_{\text {coil }}$ in separate graphs at the same window when time varies from 0 to 7 s with step 0.001 . Then call the different values of the current and voltages at $1,3,5$ second also print out the index of the max. value of $V_{\text {coil }}$.
3. A sinusoidal supply voltage of $220 \mathrm{v}, 50 \mathrm{~Hz}$ is applied on a series RLC circuit, Write a MATLAB Program ask the user to enter the values of the circuit parameters then sketch the current, voltages (v_{c}, v_{L}, v_{R}) and power (P_{c}, P_{L}, P_{R}) waveforms for t varies from 0 to ${ }^{\circ} 0 \mathrm{~ms}$ with step 0.01 ms . From the graphs determine the average and RMS values of the current also determine the average power dissipation across each element.

Fig.(1)

